NuLLs Make Things Easier?

BRUCE MOMJIAN
@ EDB

Nulls are a very useful but also very error-prone relational database feature. This talk is
designed to help applications developers better manage their use of nulls.

https://momjian.us/presentations Creative Commons Attribution License
og

it

Last updated: October 2023

1/46

Nulls in English

Null means “nothing”.

2/46

Nulls In Computer Languages

C-based languages use a NULL pointer to indicate a pointer that does not point to a value.
Languages that don’t use pointers often use an “undefined” value for a similar purpose.

3/46

Nulls in Data

What do you place in a field that has no value?
For strings, a zero-length string is reasonable.
What about numerics? -1, -99, 0?

What about dates? 1900-01-01?

4/46

Why Use NULLs

The three meanings of NULL:
e Unknown values
e Inapplicable values

e Empty placeholders

5/46

The NULL Spouse Example

If employee.spouse is NULL, does it mean?
e The spouse’s name is unknown.
e The employee is not married and therefore has no spouse.

e The employee.spouse column was an unjoined column from an outer join.

6/46

NuULLs Can Cause Their Own Problems

NEVER HAMMER ON THE END OF A
SCREWDRIVER

Don’t use NULLs in inappropriate situations. https:fjwnowe lickrl.comfphotosrandar!
7146

Warning!

In their book A Guide to Sybase and SQL Server, David McGoveran and C.]J. Date said:
It is this writer’s opinion than NULLs, at least as currently defined and
implemented in SQL, are far more trouble than they are worth and should be
avoided; they display very strange and inconsistent behavior and can be a rich
source of error and confusion. (Please note that these comments and criticisms
apply to any system that supports SQL-style NULLs, not just to SQL Server

specifically.)"

In the rest of this book, 1 will be urging you not to use them, which may seem
contradictory, but it is not. Think of a NULL as a drug; use it properly and it
works for you, but abuse it and it can ruin everything. Your best policy is to
avoid NULLs when you can and use them properly when you have to.

Joe Celko, SQL for Smarties: Advanced SQL Programming

8/46

Keep Your Eye on the Red (Text)

|

https://www.flickr.com/photos/alltheaces/

9/46

Explicit NULLs

test=> SELECT NULL;
?column?

test=> \pset null (null)

test=> SELECT NULL;
?column?

All queries in this presentation can be downloaded from https://momjian.us/main/writings/

pgsql/nulls.sql.
10/46

https://momjian.us/main/writings/pgsql/nulls.sql
https://momjian.us/main/writings/pgsql/nulls.sql

Explicitly NULL Assignment

CREATE TABLE nulltest (x INTEGER, y INTEGER);
INSERT INTO nulltest VALUES (1, NULL);

SELECT * FROM nulltest;

11/46

Implicit NULL Assignment

INSERT INTO nulltest (x) VALUES (2);

SELECT * FROM nulltest;

x|y
R
1| (null)
2 | (null)

12/46

NULL Storage Can Be Prevented

CREATE TABLE nulltest2 (x INTEGER NOT NULL, y INTEGER NOT NULL);

INSERT INTO nulltest2 VALUES (3, NULL);
ERROR: null value in column "y" violates not-null constraint
DETAIL: Failing row contains (3, null).

INSERT INTO nulltest2 (x) VALUES (4);
ERROR: null value in column "y" violates not-null constraint
DETAIL: Failing row contains (4, null).

13/46

SELECT NULL + 1;
?column?

SELECT NULL || 'a';
?column?

SELECT 'b' || NULL;
?column?

The Non-Value of NULLs

14/46

NULL Is Unknown?

CREATE TABLE inctest (x INTEGER);
INSERT INTO inctest VALUES (30), (40), (NULL);

SELECT x + 1 FROM inctest;
?column?

15/46

The Three-Valued Logic of NULLs

SELECT NULL
?column?

n
—_

SELECT NULL = '';
?column?

SELECT NULL
?column?

NULL;

SELECT NULL < NULL + 1;
?column?

NULL represents unknown, not applicable, or unassigned. It has no data type, so

comparing it to fixed values always returns NULL.
16/46

NULL Query Comparisons

SELECT 1
WHERE true;
?column?

SELECT 1
WHERE false;
?column?

SELECT 1
WHERE NULL;
?column?

WHERE only returns rows whose result is true, not false or NULL. 17/46

NULL Is Not False

SELECT true AND NULL;
?2column?

SELECT NOT NULL;
?2column?

18/46

NULL Operator Comparisons

SELECT * FROM inctest;

40
(nu11)

SELECT * FROM inctest WHERE x >= 0;
X

30
40

SELECT * FROM inctest WHERE x < 0;
X

19/46

NULL And Not Equals

SELECT * FROM inctest WHERE x < 0 OR x >= 0;
X

30
40

SELECT * FROM inctest WHERE x <> 0;
X

30
40

20/46

NuULLs And NOT IN

SELECT 1 <> 2 AND 1 <> 3;
?2column?

SELECT 1 <> 2 AND 1 <> 3 AND 1 <> NULL;
?2column?

21/46

Subqueries With NULL

SELECT 'a' IN (SELECT NULL::text);
?2column?

SELECT 'a' NOT IN (SELECT NULL::text);
?2column?

22/46

Multi-Row Subqueries

SELECT 'a' IN (VALUES ('a'), (NULL));
?2column?

SELECT 'a' NOT IN (VALUES ('a'), (NULL));
?column?

SELECT 'a' IN (VALUES ('b'), (NULL));
?2column?

SELECT 'a' NOT IN (VALUES ('b'), (NULL));
?2column?

23/46

IN Queries Expanded

SELECT 'a' = 'b'" OR 'a' = NULL;
?2column?

SELECT 'a' <> 'b' AND 'a' <> NULL;
?2column?

NOT IN subqueries returning NULLs are often problematic.

24/46

EXISTS Queries

SELECT EXISTS (SELECT 1);
exists

SELECT EXISTS (SELECT NULL);
exists

SELECT NOT EXISTS (SELECT NULL);
?2column?

EXIsTS handles NULL values differently than IN because EXISTS/NOT EXISTS only considers
whether rows are returned from subqueries; it is not matching values.

25/46

Explicit NULL Comparison

SELECT NULL = NULL;
?2column?

SELECT NULL IS NULL;
?2column?

SELECT NULL IS NOT NULL;
?2column?

26/46

Explicit NULL Comparison

SELECT * FROM inctest;

40
(nu11)

SELECT * FROM inctest WHERE x IS NULL;

SELECT * FROM inctest WHERE x IS NOT NULL;
X

30
40

27/46

Comparing NULLs With True/False Logic

SELECT 1 IS NOT DISTINCT FROM 1;
?2column?

SELECT NULL = 1;
?2column?

SELECT NULL IS NOT DISTINCT FROM 1;
?column?

SELECT NULL IS NOT DISTINCT FROM NULL;
?column?

28/46

Explicit Equality Comparisons With NULL

SELECT * FROM inctest WHERE x IS DISTINCT FROM 30;

SELECT * FROM inctest WHERE x IS NOT DISTINCT FROM 30;
X

30

29/46

Comparing NULLs to Other NULLs

CREATE TABLE disttest (x INTEGER, y INTEGER);

INSERT INTO disttest VALUES (1, 1), (2, 3), (NULL, NULL);
SELECT * FROM disttest where x IS NOT DISTINCT FROM y;

X

(nu11) | (null)

This is particularly useful for joins.

30/46

Ordering of NULLs

SELECT * FROM (VALUES (NULL), (2), (1), (NULL)) AS v(x) ORDER BY 1;

(nu11)
(nu11)

NULLs are treated as equal for ordering purposes.

31/46

Ordering NULLs First

SELECT * FROM (VALUES (NULL), (2), (1), (NULL)) AS v(x)
ORDER BY 1 NULLS FIRST;

32/46

Unique Indexes Treat NULLs as Unequal by Default

CREATE TABLE uniqtest (x INTEGER);

CREATE UNIQUE INDEX i _uniqtest ON unigtest (x);
INSERT INTO uniqtest VALUES (1), (NULL), (NULL);
SELECT * FROM uniqtest;

(nul1)
(nul1)

This can be changed in Postgres 15 and later with NULLS DISTINCT.

33/46

CHECK Constraints Allow NULLs

CREATE TABLE checktest (x INTEGER CHECK (x > 0));
INSERT INTO checktest VALUES (1), (NULL);

SELECT * FROM CHECKTEST;

ALTER TABLE checktest ALTER COLUMN x SET NOT NULL;
ERROR: column "x" of relation "checktest" contains null values

34/46

NULLs and Aggregates

CREATE TABLE aggtest (x INTEGER);
INSERT INTO aggtest VALUES (7), (8), (NULL);

SELECT COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x) FROM aggtest;
count | count | sum | min | max | avg
------- R R s S i R

3 2| 15| 7| 8 7.5000000000000000
DELETE FROM aggtest;

SELECT COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x) FROM aggtest;
count | count | sum | min | max avg

0| 0| (nul1) | (nul11) | (nul1) | (null)
The sum of zero rows is NULL.

35/46

NuLLs and GROUP By

DELETE FROM aggtest;
INSERT INTO aggtest VALUES (7), (8), (NULL), (NULL);

SELECT x, COUNT(*), COUNT(x), SUM(x), MIN(x), MAX(x), AVG(x)
FROM aggtest

GROUP BY x
ORDER BY x;
X | count | count | sum | min | max | avg
-------- L S i it i il ittt
7| 1] 1] 7| 7| 7 | 7.0000000000000000
8 | 1] 1] 8 | 8 | 8 | 8.0000000000000000
(null) | 2 | 0] (null) | (null) | (null) | (nul1)

36/46

Mapping NULLs to Non-NULLs

SELECT COALESCE(NULL, 0);
coalesce

SELECT COALESCE(NULL, 'I am null.');
coalesce

I am null.

37/46

Mapping NULLs to Non-NULLs
CREATE TABLE nullmaptest (x TEXT);
INSERT INTO nullmaptest VALUES ('f'), ('g'), (NULL);

SELECT x, COALESCE(x, 'n/a') FROM nullmaptest;
X | coalesce

g
(null)

SELECT 'a' || COALESCE(NULL, '') || 'b';
?column?

SELECT SUM(x), COALESCE(SUM(x), 0) FROM aggtest;
sum | coalesce

38/46

Mapping NULLs to Non-NULLs

DELETE FROM nullmaptest;
INSERT INTO nullmaptest VALUES ('f'), ('g'), ('n/a');

SELECT x, NULLIF(x, 'n/a') FROM nullmaptest;
x | nullif

SELECT NULLIF('n/a', COALESCE(NULL, 'n/a'));
nullif

39/46

NULLs In Arrays

SELECT NULL::INTEGER[] IS NULL;
?2column?

SELECT '{}'::INTEGER[] IS NULL;
?2column?

SELECT '{NULL}"'::INTEGER[] IS NULL;
?2column?

40/46

Row Expressions With NULLs

SELECT ROW() IS NULL, ROW() IS NOT NULL;

?column? | ?column?
__________ Fomm i ————

t | t

SELECT ROW(NULL) IS NULL;
?2column?

SELECT ROW(NULL, NULL) IS NULL;
?2column?

41/46

Row Expressions With NULLs

SELECT ROW(NULL, 1) IS NULL;
?2column?

SELECT ROW(NULL, 1) IS NOT NULL;
?2column?

SELECT ROW(1, 2) IS NOT NULL;
?2column?

42/46

Queries Returning NULLs in the Target List

CREATE TABLE emptytest (x INTEGER);

SELECT * from emptytest;
X

SELECT (SELECT * from emptytest);

SELECT (SELECT * from emptytest) IS NULL;
?2column?

A SELECT with no FROM clause is assumed to return one row.

43/46

[Think I Get It!

"Oh, that makes sense" — When you see individual behaviors of null, they look systematic, and
your brain quickly sees a pattern and extrapolates what might happen in other situations. Often,
that extrapolation is wrong, because null semantics are a mix of behaviors. I think the best way
to think about null is as a Frankenstein monster of several philosophies and systems stitched
together by a series of special cases.

Jeff Davis

44/46

Tips for Taming NULLs

¢ Define columns with NOT NULL constraints where appropriate
® preventing inappropriate NULL storage avoids future problems
® consider preventing zero-length strings too; domains can be used to combine
constraints
e Consider three-valued logic in expressions
® Avoid the return of NULL values from NOT IN subqueries
® perhaps add col IS NOT NULL
® Use IS NOT DISTINCT FROM for equality comparisons with possible NULL values
® col1 1S NOT DISTINCT FROM col2 is the same as coll = col2 OR (col1 1S NULL AND col2 1$
NULL)

® [S DISTINCT FROM is used for not-equal comparisons
e Use COALESCE() to map NULL values to non-NULL values and NULLIF() for the reverse

45/46

Conclusion

The presentation blog posts are at https://momjian.us/main/blogs/pghblog/2013.html#January 23 2013.
[Ofix0]
5 & https://momjian.us/presentations bttps:/jwwmw flickr.com/photosimicspeciallinglefttosayced

46/46

 https://momjian.us/main/blogs/pgblog/2013.html#January_23_2013

